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Figure 1: Schematic of the essential elements and processes required for X-ray imaging. Each step is a factor in the quality of the final displayed image. 
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Abstract 

With the introduction of the FlashPad™ HD detector 
and an improved 100 micron pixel size, the Helix™  
image processing chain was introduced to take  
advantage of the additional high frequency information 
in the image and provide images with exceptional  
detail. The Helix 2.0 image processing chain builds 
upon the success of Helix by including three new  
algorithms which provide local contrast enhancement 
in chest images, noise reduction with edge and detail 
preservation, and consistency in brightness and contrast 
for image display. Helix and Helix 2.0 represent a leap 
forward in image quality by consistently delivering 
images with appropriate detail, contrast, and latitude. 

Introduction 
The transformation of X-ray photons into an image 
that is suitable for visual interpretation consists of 
several essential steps, each which factor into the 
image quality of the final displayed image as shown 
in Figure 1. These elements are comprised of X-ray 
generation, acquisition, image processing and 
image display. 

During the X-ray generation process, the exposure 
techniques determine the number and energy 
spectrum of X-ray photons that penetrate through 
the body and are incident on the detector. The 
X-ray photons that are absorbed by the detector 
are converted to a digital signal, which is linearly 
proportional to dose, and corrected for the 
detector characteristics in the acquisition stage. 
The X-ray spectrum as well as the characteristics 
of the detector such as the sensitivity, pixel size, 
electronic noise, and detective quantum efficiency 
all contribute to the signal, contrast, noise and 
resolution of the image output by the detector.



Introduction (continued)

In the image processing stage, the raw image from the  
detector is enhanced to bring out clinically relevant details  
and produce an image that is suitable for viewing and  
interpretation. Enhancement of low contrast features and 
providing ideal latitude over different regions in the image is 
important for subjective assessment of image quality and aids 
in the visual identification of subtle features. Lastly, the image 
is typically rendered on a monitor, using a display lookup 
table that mimics the H-D response of film, or printed on film. 
The computation of the display lookup table is also critical to 
ensure the image is presented with the appropriate brightness 
and contrast on the display monitor. 

Although each element plays an important role in the image 
quality of the displayed image, the design of intelligent image 
processing algorithms that can enhance subtle features 
consistently and deliver images with suitable contrast and 
brightness remains a challenging task. This is likely due to the 
large range of conditions (exposure techniques, field of view, 
anatomical positioning and thickness) that is encountered in 
general radiography, as well as the difficultly of designing  
generalized algorithms that can adapt to these variations. 
Image processing algorithms must adequately account for 
these differences to consistently produce images that are 
subjectively pleasing and allows the radiologist to visualize 
clinical details.

Helix is a collection of algorithms that work together as part 
of an image processing chain that aims to provide consistent 
enhancement and display. At its core are algorithms that provide 
different functionality such as anatomical segmentation, 
multi-resolution frequency enhancement, scatter reduction, 
equalization, noise reduction, and display presentation, but as 
a whole target to deliver images with appropriate detail and 
contrast consistently. Since the individual components of the 
Helix image processing chain can be elegantly controlled, it 
also provides a great amount of flexibility to obtain different 
looks to meet the wide range of preferences of its users. 

Helix incorporates many improvements over its predecessor. 
With the introduction of the FlashPad HD detector and the 
100 micron pixel size, the image processing chain was modified 
to provide additional enhancement of fine-detail in images. 
Edge handling and presentation of high contrast objects was 
also improved to allow better discrimination and visualization 
of edges. The determination of display brightness and contrast 
was also modified to provide robust consistency with changes 
in patient thickness and dose. Finally, automated software 
scatter reduction by the Autogrid algorithm provided equivalent 
contrast improvement to images acquired with a grid.1

Helix 2.0 is comprised of the same image processing elements 
of Helix, while incorporating three additional algorithms. An 
AI-based brightness/contrast algorithm harnesses the power  
of deep-learning to minimize inconsistencies in the final  
presentation compared to traditional methods that derive the 
display parameters from histogram methods. Helix 2.0 also  
provides additional capability to improve local contrast in chest 
images, and reduce noise using a filter that minimizes noise 
while preserving edges and details. The local contrast  
enhancement (LCE) algorithm increases local contrast for  
improved visualization of the lungs, heart, and spine regions. 
The detail preserving noise reduction (DPNR) algorithm is based 
on an edge preserving filter to selectively reduce noise in  
homogenous regions of the image, while maintaining subtle 
edge features. Ask a GE sales representative for information 
about which systems are available with Helix and Helix 2.0 
image processing software.

Helix image processing chain architecture
Collectively the algorithms that comprise the Helix image 
processing suite provide enhancement of the raw image from 
the detector to generate a diagnostic image with improved 
visibility of fine details. Internally, Helix consists of two parts 
that provide different functionality and outputs. The first part 
of the image processing chain is composed of algorithms that 
provide identification of the edges and region of the X-ray field, 
segmentation of the anatomical areas in the image, as well as 
basic image transformations to rotate or flip the image based 
on the acquisition protocol. There is no change to the pixel data 
other than any rotation and flip that may be applied. The output  
is the raw image itself which is saved on the system. In the 
second portion of the image processing chain, a collection of 
algorithms is used to modify the image pixel data and enhance 
clinical features for review. The algorithms provide different 
types of enhancements to the image such as multifrequency 
edge and contrast enhancement, tissue equalization, and 
brightness and contrast enhancement. In addition, there are 
algorithms for the derivation of a display lookup table that 
provides suitable contrast and brightness of the image for 
viewing. The output is the processed image and display lookup 
table for diagnostic review. 

The advantage of this architecture is that the raw images saved 
on the system can be accessed at any time and reprocessed to 
generate additional processed images. This provides the user 
the flexibility to reprocess the same raw image with different 
looks or types of enhancement if desired. 
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Helix image processing 
Identification of the X-ray field 
As part of the Helix image processing chain, the X-ray field is 
determined by identifying edges of the collimator on the image. 
This identification is necessary to crop the X-ray field from the 
processed image for display, and aid in the segmentation of the 
anatomical regions in the image. An accurate identification 
of the X-ray field is significant since errors result in additional 
workflow for technologists to modify and adjust the field of 
view after image display on the system.

Two different techniques can be used to extract the collimator 
edges. In the first method, the positioner module as part of 
an integrated X-ray system provides the collimator vertices 
which is used to robustly estimate the collimator edges in the 
image. With the approximate location of the collimator edges, 
the true edges of the collimator can be identified in the raw 
image using a template-based correlation technique that is 
constrained to specific regions of the image. The X-ray field can 
then be obtained since it is enclosed by the collimator edges. 

Because this method requires positioner feedback, it is used in 
cases when the system has a collimator with this feature such 
as in some GE’s fixed X-ray systems when using wallstand and 
table receptors.

The second method determines the collimator edges based 
on image data alone and is completely automated. It is used in 
cases when no positioner feedback is available, such as in GE 
mobile X-ray systems and fixed X-ray systems when using digital 
cassette mode. This method extracts potential candidate 
edges from the image using an edge operator, then performs  
a validation process based on the characteristics of the lines 
to obtain 4 collimator edges.

With the introduction of Helix, significant modifications were 
made to improve the overall performance of the image-based 
collimation edge detection algorithm and provide consistent 
performance with variations in collimation and patient  
positioning. This is particularly true for pediatric cases, where 
there is significant variability in patient positioning and X-ray 
field size as shown in Figure 2.

Figure 2: Examples of the image-based collimation edge detection algorithm 
on pediatric patients.
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Helix image processing (continued)

Detection of anatomical regions
A second important component of the Helix image processing 
chain is the segmentation of anatomical regions in the raw 
image. The algorithm identifies regions of unattenuated exposure 
(or raw radiation) in the image by examining both edge and 
signal information of the raw image, thereby generating a 
binary mask corresponding to the raw radiation. The mask is 
combined with the X-ray field of view to define the anatomical 
regions in the image. 

It is important to identify pixels corresponding to the anatomy 
to determine ideal image processing parameters for algorithms 
downstream in the image chain. It is also critical for the  
determination of correct detector exposure and deviation 
index values as part of the DEI (detector exposure indicator) 
feature,2 which provides end-users visual information on  
detector exposure in digital X-ray images.

To improve the overall accuracy of the identification of the  
anatomical regions in the image, Helix incorporates an  
additional step to refine the anatomy mask to remove  
miscellaneous objects such as lead markers within the X-ray 
field of view that are not connected to the anatomical region as 
shown in Figure 3. This step improves the overall consistency 
of image processing steps performed downstream and in the 
display of the processed image, particularly for images with 
a small field of view, by eliminating regions of the image that 
may have significantly different attenuation than that of the 
anatomy area.

Multi-frequency enhancement
Substantial changes were made to the Helix image processing 
chain to take advantage of the smaller pixel size of the FlashPad 
HD detector. Helix employs a multi-resolution decomposition 
technique to provide selective enhancement of features in an 
image based on their frequency content. In this approach, an 
input image is progressively filtered and downsampled by a 
factor of 2 to create a pyramid of images (levels) with decreasing 
resolution and size as shown in Figure 4. Since the images 
are progressively blurred, the frequency content contained in 
the images decreases from the higher to lower levels. At each 
level in the pyramid, a detail layer is computed by taking the 
difference of the image with the image generated at the level 
below after upsampling to match the size. In this manner, 
detail layers contain local pixel differences between two levels 
within a specific frequency range. 

In the reconstruction phase, the detail layers are recombined 
through a summation process to generate an output image 
with selective enhancement of particular frequencies. The 
decomposition of the image into different frequency bands  
is advantageous for several reasons. 

First, frequencies in the final image can be dictated by  
enhancing the detail layers differently. For example, if the top 
detail layers are enhanced more than the bottom layers, the 
final reconstructed image will have a larger emphasis of high 
frequencies relative to low frequencies. Second, the contrast 
within detail layers can be changed to enhance lower contrast 
features relative to larger ones, thereby increasing their visibility. 
This allows a significant amount of flexibility to generate images 
with the appropriate amount of edge detail and contrast.

Figure 3: The signal and edge information of the raw image and the field of 
view mask are used to determine the anatomical region in the image. This 
region is further refined by removing other non-connected objects such as  
lead markers.

Figure 4: Multi-resolution decomposition technique progressively creates 
blurred images with decreasing size and resolution (left). Detail layers in the 
pyramid are generated by taking the difference between these blurred images  
at different levels and is comprised of a specific frequency band (right). 
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During the reconstruction phase, care must be taken in the  
enhancement of the “detail layers” to avoid overshoot/ 
undershoot artifacts that can often occur at the border of high 
contrast objects. With Helix, the enhancements provided in 
each detail layer were elegantly controlled to minimize the 
presence of these types of artifacts and provide improved edge 
presentation as shown in Figure 5. This is particularly important 
in orthopedic applications, where overshoots and undershoots 
around metal implants can obscure the assessment of the 
placement and lamination of hardware in bone.

With the introduction of the FlashPad HD detector, the spatial 
limiting resolution of GE’s digital detectors were increased 
from 2.5 lp/mm to 5 lp/mm. Helix is able to enhance this high 
frequency information as shown in Figure 6. The consequence 
of this is better visualization of features such as bone trabecular 
detail and small hardware, which may aid in the assessment  
of subtle fractures or placement of hardware.

Helix provides end users with ability to select different levels 
of edge enhancement and control contrast enhancement 
within the multi-resolution algorithm. Users can select from 
13 different edge levels and 30 tissue contrast enhancement 
levels per anatomy, view and patient size protocol. This allows  
a significant amount of flexibility to obtain different types  
of looks to accommodate the wide range of preferences  
of its users. 

Tissue equalization
In addition to multi-resolution frequency enhancement, 
equalization of the image plays a critical role in allocating  
suitable gray scale range over different portions of the image 
and improving contrast and visibility in dense or thin regions 
of the anatomy. Helix uses an equalization process, referred 
to as Tissue Equalization (TE), in the image processing chain to 
modify the apparent thickness of thick and thin regions in the 
image. By changing the thickness, the contrast and visibility  
of these regions are increased, while maintaining suitable  
contrast in the primary area of interest as shown in Figure 7. To 
improve the contrast of thick regions, the relative thickness is 
reduced and brought closer to the normal thickness region or  
“region of interest.” Similarly, to improve the visibility of thin  
regions, the thickness is increased relative to the “region of  
interest.” This equalization process is applied to the low frequency 
component of the image to preserve high frequency details.

The thick or thin regions of the image are defined by the  
under-penetrated and over-penetrated areas, which are  
specified as a percentage of the total anatomical area. The 
equalization amounts for the thin and thick regions are specified 
by the under-penetrated and over-penetrated strengths,  
respectively which vary from 0 to 100%. With Helix, users can 
select both over-penetrated (thin) and under-penetrated 
(thick) areas and over and under-penetrated equalization 
strengths. These parameters are configurable for each  
anatomy, view, and patient size to allow a wide range  
of customizable looks. 

Figure 5: Simulated 200 micron images processed without Helix (left). 100  
micron images from the FlashPad HD detector processed with Helix (right).  
Notice the metal overshoot artifact shown on the left and improved edge 
handling on the right.

Without Helix With Helix

Figure 6: Simulated 200 micron images processed without Helix (left). 100  
micron images from the FlashPad HD detector processed with Helix (right). 
Notice the additional bone trabecular and hardware detail in the images  
on the right.

Without Helix With Helix
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Figure 7: Example of images processed without (left) and with (right) Tissue 
Equalization (TE) (top). TE provides better visualization of the hardware in the 
thicker shoulder region as well as more contrast in the thinner soft-tissue 
regions in the Cervical-Spine images (bottom). The spine is better visualized  
in the lung and hip region with TE in the Lumbar-Spine image.

Helix image processing (continued)

Display 
The last components of the image chain are performed to  
optimize the image for display and visual inspection. To mimic 
the film optical density response to exposure, the grayscale  
of the image is inverted and transformed using a gamma  
relationship. A suitable sigmoidal curve or lookup table for 
image display is then calculated from parameters derived by 
histogram analysis of the pixels within the anatomy region. 
Since this is performed on a per-image basis, each image is 
individually optimized for display. In addition, two supplementary 
lookup tables are calculated to generate a soft and hard look, 
in addition to the normal look provided by default. This flexibility 
allows a radiologist the option to switch between the normal, 
soft and hard looks while reviewing the image on PACs based 
on preference. 

Helix was optimized to produce images with consistent 
brightness and contrast, even when there are large variations 
in exposure as shown in Figure 8. By determining characteristics 
of the histogram and accounting for changes in the histogram 
with dose, a consistent presentation can be achieved even 
with significant variations in the detector entrance exposure.

Figure 8: Helix provides consistent brightness and contrast despite large  
variations in detector entrance dose. 

Improvements with Helix 2.0

Three additional algorithms were integrated into the Helix 2.0 
image chain. These algorithms expand the capabilities of Helix 
by providing improved local contrast enhancement in chest 
images for lung and spine visualization, noise reduction with 
edge and detail preservation, and consistency in brightness 
and contrast for image display.

Without TE With TE
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Local contrast enhancement
Chest X-ray imaging is the most frequently performed clinical 
X-ray exam and is used by clinicians to evaluate a multitude  
of conditions including breathing difficulties, chest pain, 
pneumonia, heart failure, and other medical conditions. Due to 
the frequency of chest X-rays and their use to diagnose many 
different clinical conditions, there is an increased importance 
in providing high quality images that offer ideal contrast in 
the lung, heart and spine regions to improve discrimination of 
subtle features and pathology. In addition, there can be a wide 
range in the preferences of radiologists, particularly in the look 
of chest X-rays. Any algorithm that enhances contrast must 
also provide the capability and flexibility to deliver a range of 
looks that meet the diverse preferences of clinicians. 

The Local Contrast Enhancement (LCE) algorithm increases 
local contrast in chest X-ray images for better visualization  
of the lungs, heart, and spine regions as shown in Figure 9.  
The algorithm improves local contrast by estimating a low 
frequency component of the image and removing this signal 
to boost local contrast. The low frequency signal is estimated 
by the algorithm which has been optimized in conjunction 
with multiple configuration parameters that are specific to the 
patient size, view, and acquisition techniques. The result is an 
image with improved local contrast, particularly in the lung 
region, when compared to the original. 

LCE is available for single energy frontal and lateral chest 
exams and the standard image of dual energy chest images. 
LCE can be customized to provide four levels of enhancement 
(none, low, medium, high). The strength level can be configured 
per view and per patient size, thereby offering the flexibility 
to tailor the strength of the enhancement to the preference 
of the radiologist. The algorithm supports large pediatric and 
all adult patient sizes, and is available for all receptors (digital 
cassette, table, and wallstand). The algorithm can also be used 
with and without use of a physical grid and autogrid processing.

The LCE feature was reviewed at five different hospitals over 
a four-month duration. The overall configuration and levels of 
enhancement provided by the LCE algorithm was optimized 
based on feedback from radiologists at each site.

Detail preserving noise reduction
Noise in X-ray systems originates from several sources including 
quantum photon noise and detector electronic noise. For 
typical use-cases, the largest contributor of noise is quantum 
photon noise, which is random and appears as a granular or 
textured pattern in images. Depending on its magnitude, noise 
may reduce the visibility of certain features within the image 
particularly for low-contrast objects. The amount of photon 
noise in an image depends on the exposure level or number of 
X-ray photons incident on the detector. As exposure increases, 
noise in the image increases according to a square root  
relationship with the number of incident X-ray photons. However, 
if you consider the amount of noise relative to the signal level 
(or signal to noise ratio, SNR), the relative noise decreases (SNR 
increases) with a square-root relationship to the exposure. 

Since the number of X-ray photons that reach the detector for  
a given exposure level depends on many factors including  
patient thickness, attenuation, and positioning, different  
regions of the same image can have markedly different levels 
of noise and SNR. In some regions of the image, SNR may be 
high and noise may not be visually apparent, while in other  
regions SNR may be low with visible noise that obscures  
details. In other applications such as pediatric imaging, 
limiting dose may be a primary concern, resulting in low SNR 
throughout the image. In addition, image post-processing 
algorithms that provide contrast or detail enhancement 
may change the noise characteristics of the image and often 
increase the visibility of noise. Care must be taken to account 
for these changes, while only filtering noise in locations of the 
image where it is needed.
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Figure 10: (top) Example of a chest image with high DPNR level and the noise 
that is removed. The amount of noise reduction spatially varies based on the 
SNR model. (bottom) Zoomed in portion of the spine displaying the noise 
removal with DPNR.

Helix image processing (continued)

Detail preserving noise reduction (continued)

Helix employs a detail preserving noise reduction algorithm 
(DPNR) to adaptively remove noise in an image based on a 
SNR model as shown in Figure 10. Using the SNR model, locations 
of the image that have higher levels of noise relative to the 
signal are increasingly filtered (low SNR), while locations with 
higher SNR are filtered less or not at all. Since the SNR model 
is determined on a per-image basis, the noise reduction filter 
adapts to the noise characteristics of a particular image. 

In addition to adaptively filtering locations of the image that 
have lower SNR, DPNR uses an edge-preserving filter to reduce 
noise while maintaining edge details as shown in Figure 10. 
Other filtering techniques that use general smoothing methods 
can effectively reduce noise, but suffer from loss of fine detail 
because edges are blurred. DPNR uses a method to minimize 
intensity variations between the input and filtered image, 
while penalizing any smoothing that would occur across  
significant edges. In this manner, DPNR maintains the same 
local average signal level in the output image compared to the 
input image, while efficiently reducing noise and preserving 
subtle edge details. 

DPNR is available for single energy and standard dual energy 
images. It can be customized to provide four different levels 
of noise reduction (none, low, medium, high), which can be 
configured per anatomy, view and patient size. The algorithm 
supports all patient sizes and can be used with all receptors.

AI brightness/contrast
One of the primary challenges of any image processing suite 
for general radiography is producing consistent display of  
output images in terms of brightness and contrast. Inconsistency 
in the presentation of an image may arise from multiple sources 
including differences in patient body habitus, positioning, 
field of view, exposure, and algorithm handling as shown in  
Figure 11. These inconsistencies may require additional workflow 
for technologists or radiologists if adjustments to image 
brightness or contrast are needed on the system or on a  
PACS workstation. 

One approach to derive a display curve is to use histogram-based 
methods. Typically, pixels corresponding to relevant regions  
in the image are identified and used to derive a histogram.  
Parameters characterizing the width, center, and potentially 
other properties of the histogram are computed to determine 
an appropriate display curve expressed as a lookup table. 
This lookup table commonly has a sigmoid shape that resembles 
the H-D response of film. Although histogram methods are 
straightforward, they can be sensitive to “outlier” pixels from 
metal or other highly attenuating objects, or errors in the  
exclusion of raw radiation regions. The lookup table will also 
be sensitive to differences in the pixel data itself which may 
change due to variations in patient positioning and FOV.  
As a result, derivation of the display lookup table and the  
corresponding contrast and brightness of the displayed image 
may be inconsistent when comparing images acquired in  
different patients, or even within the same patient with  
different positioning. 

Helix 2.0 employs a novel AI deep learning-based algorithm  
to improve image presentation consistency. The AI Based 
Brightness Contrast Algorithm (AI BC) uses a convolutional 
neural network to classify an X-ray image based on its  
brightness and contrast to achieve consistent presentation.4 
The AI model was trained using more than 30,000 unique  
images from different anatomy/views. The AI algorithm  
classifies an image into one of multiple pre-trained WW and 
WC labels depending on the overall brightness and contrast  
of the image. Based on the output classification, the WW and 
WC of the image are then adjusted to achieve the default  
contrast and brightness for a particular anatomy and view,  
as shown in Figure 12. If a custom configuration is used, the 
brightness and contrast settings will be further adjusted  
based on settings of the custom look. This flexibility allows  
any target brightness and contrast setting to be obtained, but 
with the AI BC algorithm, these settings are achieved more 
consistently. The final WC and WW is then used to define a 
lookup table for display of the image on the system and  
PACs workstation. 
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Figure 12: A flow diagram depicting an abridged model of the AI B/C algorithm.

Figure 11: An example of inconsistent image presentation due to the presence of a highly attenuating metal implants in 2 patients.

A qualitative assessment of the AI BC algorithm can be  
performed by visually comparing a variety of images processed 
with the algorithm as shown in Figure 13. There are several  
images that display inconsistent brightness and contrast relative 
to other images for that particular anatomy/view without AI BC. 

Correction of brightness and contrast and overall improvement 
in the consistency of the images can be observed for the images 
with AI BC applied.

Figure 13: A montage of 
images comparing the 
brightness and contrast of 
images generated using a 
histogram method (without 
AI BC) and with application 
of the AI BC algorithm  
(with AI BC). Note the  
improvement in consistency 
for each anatomy/view 
using the AI BC algorithm.

Without AI BC With AI BC

Initial WC, WW Image for display

AI BC  
algorithm for  

default  
WC, WW

Adjustment  
of default  
WC, WW

Display  
lookup table 
generation
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Helix image processing (continued)

AI brightness/contrast (continued)

The performance of the AI BC algorithm can also be evaluated 
using quantitative metrics. Small ROI regions are selected in 
common locations such as bone, soft tissue, and raw radiation 
(air) in multiple images of the same anatomy and view from 
different patients. For each ROI, a mean signal level is computed 
and the standard deviation of the mean values among different 
patients is determined as a measure of consistency as shown 
in Figure 14. In this example of 12 wrist images, the standard 
deviation of the bone, soft tissue, and raw radiation was  
reduced on average by 53% with the AI BC algorithm compared 
to images with display derived using a histogram method, 
indicating substantial improvement in the consistency of  

the displayed brightness levels. In addition, variation in the 
contrast between the bone and tissue ROIs was reduced by 
39%, indicating improved contrast consistency using AI BC. 
The ability to provide consistent image presentation particularly 
for challenging cases may reduce workflow required by both 
technicians and radiologist to adjust images.

In summary, the AI BC algorithm represents a significant 
advancement because of its capability to produce images with 
consistent brightness and contrast, especially in challenging 
cases. The AI BC algorithm is available for the most frequently 
imaged anatomy/view combinations and for all patient sizes. 

Figure 14: Example of 3 ROIs (Bone, Soft Tissue, Raw Radiation) placed in common locations for 12 wrist PA images acquired in different patients (left).  
Measurements of the mean signal levels in the 3 ROIs (right) in different patients. Ideally the curves would be a flat line with minimal variation for images  
of patients with similar bone density and characteristics. The standard deviation (std dev) of the mean signal level among the 12 patients decreases with AI BC,  
indicating less variation in the display brightness and contrast.
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Conclusions 
The Helix image processing chain is comprised of individual 
elements that provide different functionality but work together  
to deliver optimized contrast and detail enhancement with 
consistent image display. With the introduction of the FlashPad 
HD detector and the improved 100 micron pixel size, algorithms 
were modified to take advantage of the additional high 
frequency information in the image and provide images with 
exceptional detail. Improvements were also integrated into 
several algorithms to improve the overall consistency in the 
output image quality. Although Helix is designed to work 
out of the box, many of the algorithms can be individually 
controlled and configured. Therefore, Helix has a significant 
amount of flexibility to attain looks that meet the wide range of 
preferences of its users. Please refer to the operator manual to 
obtain additional information on how to configure custom looks.

Three new algorithms were introduced as part of Helix 2.0 
image processing chain. These algorithms provide additional 
capability by offering improved local contrast enhancement  
in chest images, noise reduction with edge and detail  
preservation, and improved consistency of brightness and 
contrast for image display. Overall, GE’s Helix 2.0 builds upon 
the improvements of Helix and provides a flexible image  
processing suite that offers images with exquisite detail,  
balance and consistency for its customers. 

Helix 2.0 image processing examples
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