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Accurate quantitation (SUV - Standardized Uptake Value) is becoming more 
important as clinicians seek to utilize PET imaging for more than just diagnosing  
and staging disease, but also for treatment monitoring. The significant challenge 
with delivering consistently accurate SUV measurements in PET imaging is that 
lesion size, volume and contrast recovery are highly impacted by today’s 
reconstruction algorithm. Q.Clear technology is a step forward in providing 
quantitation accuracy while not sacrificing excellent image quality in PET imaging. 
This new approach considers all aspects of the imaging chain and the cumulative 
effect of all improvements, from small to large, to make PET/CT imaging an  
accurate tool for enabling both confident diagnosis and precise treatment  
response assessment.



INTRODUCTION
There is renewed interest in the PET imaging community 
in obtaining quantitative information about lesion uptake 
values. Because of this, improvements in image reconstruction 
algorithms that offer the ability to obtain more accurate 
estimates of uptake in lesions are of significant interest. Many 
advancements have been made towards this end, including 
improvements in system corrections such as randoms and 
fully 3D scatters[1-2], advances in motion correction[3], modeling 
of the system point spread function[4], and the inclusion of 
more accurate projectors and the incorporation of all system 
corrections into a fully 3D PET image reconstruction model[5]. 

A core tenet of PET image reconstruction algorithms is the 
modeling of the underlying PET Poisson noise statistics. 
Iterative image reconstruction techniques that accurately 
model the inherent PET physics are generally preferred over 
standard analytic methods including filtered backprojection 
(FBP) because of significant increases in signal-to-noise 
(SNR). The most commonly used clinical PET reconstruction 
algorithm is the Ordered Subsets Expectation Maximization 
(OSEM) algorithm. OSEM offers the advantage of accurately 
modeling the underlying PET physics and also generating 
the PET images in clinically relevant times via accelerated 
convergence through the use of subsets. 

One drawback to the OSEM algorithm is that it generally 
cannot be run to full convergence because the noise in the 
image grows with each iteration. To compensate for this, the 
algorithm is generally stopped after a predetermined number 
of iterations, typically two to four, resulting in an under-
converged image. Because PET contrast recovery depends 
on OSEM convergence rates, an under-converged image may 
produce bias, directly impacting lesion quantitation.

To address the effects of convergence and provide more 
accuracy in PET quantitation, the Regularized Reconstruction 
iterative algorithm (Q.Clear) is being introduced, incorporating 
prior knowledge about the image quality into the 
reconstruction. This prior knowledge is incorporated as a 
term in the algorithm discouraging differences in neighboring 
image voxel values. By incorporating this factor into the 
reconstruction algorithm, the algorithm can be run to full 
convergence and provide more accurate quantitation levels 
and improved SNR over OSEM. 

OSEM AND CONVERGENCE
The most widely used reconstruction algorithm in PET clinical 
imaging is OSEM, an accelerated variant of the ML-EM 
algorithm[6-8]. The goal of ML-EM is to find the most likely 
image given the data, defined as the image that maximizes 
the likelihood (or statistical probability) of producing the 

acquired data. For Poisson data, the goal of maximizing that 
probability (expressed here as its logarithm) can be described 
mathematically by the objective function

, (1)

where yi represents the measured PET coincidence data, x is 
the image estimate, and P is the system geometry matrix. 

The ML-EM algorithm provides an update equation which, given 
an image that isn’t at the maximum of this function, generates a 
new image with an increased likelihood. Repeating, or iterating, 
this algorithm to convergence, when the update equation does 
not substantially change the image, yields the ML image. OSEM 
accelerates the convergence of ML by performing updates 
based only on a portion of the data at once, which approximates 
the ML-EM solution in much less reconstruction time.

Due to the low volume of information in a conventional 
clinical PET acquisition, reconstructions using ML-EM or 
OSEM suffer from high noise when run to its full convergence. 
To avoid this result, the algorithm is typically stopped after 
2-4 iterations. This is an effective method to reduce noise in 
the PET images, but the noise reduction comes at a cost of 
reduced quantitative accuracy and the potential introduction 
of distortions in small objects. 

This effect is demonstrated with a simple simulation as shown 
in Figure 1. Two small active objects of the same size and 
activity level are simulated, with one of the small objects 
placed between the two large elliptical objects of uniform 
activity distribution. Reconstructed images are shown using 
OSEM with 2 iterations and 25 iterations. While the fully 
converged 25 iteration image shows much improved contrast 
and a significant reduction in spatial distortions, excessive 
noise is introduced.

Partial Convergence  
(2 iterations)

Full Convergence 
(25 iterations)

Figure 1. Phantom simulation demonstrating the effects of convergence.  The image on 
the left is reconstructed with two iterations of OSEM; on the right, 25 iterations.  Note the 
spatial distortion and loss of counts in the indicated feature at 2 iterations.



Q.CLEAR
Q.Clear is a Bayesian penalized likelihood (PL) reconstruction 
algorithm[9-10] which incorporates an additional term in the 
objective function of equation 1. This term increases as image 
noise increases, reducing the objective function, which has the 
effect of steering the optimization algorithm away from noisier 
images. This allows the algorithm to reach full convergence 
without the detrimental effects of excessive noise found  
with OSEM.

The PL objective function is written as:

,    (2)

where the first several terms are the same as in Equation 1, 
R(x) is a penalty to control noise and β controls the relative 
strength of the regularizing term relative to the data statistics.

Q.Clear makes use of the Relative Difference Penalty (RDP)
[11] which has the advantage of providing activity dependent 
noise control. The RDP is given by

 
,
  (3)

where wj and wk are relative weights for different components 
of the function and γ is a tunable parameter which controls 
edge preservation.

Q.Clear uses the Block Sequential Regularized Expectation 
Maximization (BSREM) algorithm to solve equation 2[12-13].  
BSREM algorithm allows every single image voxel to achieve 
100% convergence despite OSEM that did not seek for 
convergence and may achieve partial convergence, full 
convergence or over convergence in one single image.

The regularization is also modulated to allow an optimal 
tradeoff between image quality and quantitation. The penalty 
is designed such that edges are preserved while background 
image noise is kept low, thus providing superior image 
quality[14]. Because Q.Clear is always run to convergence, 
iterations and subsets are no longer inputs provided to the 
user as is commonly done in OSEM. In addition, since the 
image noise is controlled inside the iterative reconstruction 
as part of regularization, post filters are not necessary; this is 
shown in the process flow map of Figure 3. 

Figure 2. Clinical data reconstructed with a range of OSEM iterations. Excessive noise is introduced as the image reaches convergence.

A clinical example of this effect is shown in Figure 2. Excessive noise is introduced into the high iteration images. To avoid this, an 
under-converged image, like the two-iterations image shown, is typically used in clinical practice.

1 iteration 2 iterations

OSEM Convergence Challenges

10 iterations 25 iterations



FULL CONVERGENCE WITH NO 
COMPROMISES
PHANTOM ANALYSIS
Anthropomorphic Phantoms 
To demonstrate that full convergence using Q.CLEAR doesn’t 
compromise image quality, SNR has been measured on two 
anthropomorphic phantoms filled and scanned on  
the Discovery* PET/CT 710. The first phantom was an 
Anthropomorphic Torso PhantomTM (Data Spectrum Inc, 
Durham, NC) as shown in Figure 4. The phantom was 
modified by the manufacturer so that 10 mm diameter hollow 
spherical inserts could be placed in varying locations within 
the phantom. The phantom was filled with 18F-FDG and the 
spheres were filled to a target of four times the background. 

The second phantom scanned was a modified Extended Oval 
PhantomTM (also from Data Spectrum) as shown in Figure 5. The 
phantom was modified to include two mounted bottles, and 
each was filled to a similar density as the lung background of the 
anthropomorphic phantom. In addition, another bottle mounted 
in the middle of the phantom was filled to twice the background 
activity in order to emulate a hot organ. The phantom also 
contained spherical inserts to mimic lesions. These spheres were 
filled to 4 times the background activity concentration. In the 

Extended Oval phantom, a 10 mm diameter sphere was  
placed into one lung insert. In the background, two spheres  
(10 mm, 13 mm) were located between the lungs and the hot 
organ (see Figure 4). A 40 million count PET/CT study was done 
on the Discovery PET/CT 710 scanner to simulate a single frame 
of a representative clinical exam. 

Data acquired from both phantoms was reconstructed with 
OSEM and Q.Clear. The OSEM images were filtered with a 4 mm 
transaxial Gaussian filter and a light axial filter [1:6:1] to control 
noise. The Q.Clear images were reconstructed with β=350 and 
no post filtering. All corrections were applied inside the iterative 
reconstruction loop as shown in Figure 3 for both OSEM and 
Q.Clear. The images reconstructed using Q.Clear, shown in 
Figure 4 and Figure 5, demonstrate superior contrast to the 
OSEM images, particularly in the lung region. This is attributed 
to the slow convergence of OSEM in the cold background. The 
SNR results demonstrate a significant improvement with Q.Clear 
over OSEM, with particular improvement shown in the lung 
region but a clear benefit throughout the entire image. 

Figure 3. Process flow maps for conventional OSEM iterative reconstruction and Q.Clear. Q.Clear is a fully convergent iterative reconstruction method. Unlike OSEM, Q.Clear controls 
noise as part of the regularization process inside iterative reconstruction.
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Figure 4. (a) Anthropmorphic Torso PhantomTM (Data Spectrum, Durham, NC) modified 
to include 10 mm spherical inserts. (b) Reconstructed images from a 40M count study 
acquired on a Discovery PET/CT 710. OSEM images reconstructed using 2 iterations/24 
subsets and a post-filtering of a 4 mm FWHM Gaussian in-plane and a [1:6:1] weighted 
axial filter. Q.Clear images reconstructed with β=350 and no post filtering. (c) SNR 
measurements where SNR is defined as signal in a sphere ROI divided by the standard 
deviation of large uniform background VOI. 
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Figure 5 (a) Extended Oval PhantomTM (Data Spectrum, Durham, NC) modified to include 
10 mm and 13 mm spherical inserts, a lung region and an adjacent hot organ. (b) 
Reconstructed images from a 40M count study acquired on a Discovery PET/CT 710. 
OSEM images reconstructed using 2 iterations/24 subsets and a post-filtering of a 4 mm 
FWHM Gaussian in-plane and a [1:6:1] weighted axial filter. Q.Clear images reconstructed 
with β=350 and no post filtering. (c) SNR measurements where SNR is defined as signal in 
a sphere ROI divided by the standard deviation of large uniform background VOI.



NEMA Image Quality Phantom
A NEMA Image Quality IEC Phantom (Data Spectrum, Durham, 
NC) shown was filled with 18F-FDG and scanned on the 
Discovery PET/CT 710. Images were reconstructed with OSEM 
and Q.Clear. As described previously, all corrections were 
applied inside the iterative loop for both algorithms. OSEM 
images with 2 and 25 iterations are shown along with a 
Q.Clear image in Figure 6. The 25 iteration OSEM image shows 
improved contrast over the 2 iteration image; however, there is 
also a significant increase in image noise. Q.Clear shows up to 
2 times improvement in PET quantitation accuracy (SUVmean) 
and PET image quality (SNR) over OSEM on both the Discovery 
PET/CT 610 and Discovery PET/CT 710.

OSEM 2 iter OSEM 25 iter Q.Clear

Figure 6. (a) NEMA Image Quality Phantom (Data Spectrum, Durham, NC) images from a study 
acquired on a Discovery PET/CT 710. OSEM images are shown for 2 iterations and 25 iterations 
and a post-filtering of a 6.4 mm FWHM Gaussian in-plane and a [1:4:1] weighted axial filter 
“Standard” axial filter). Q.Clear images are shown with β=350. 

QUANTITATION AND VISUAL 
IMPROVEMENTS ON CLINICAL DATA
PET/CT scans acquired on Discovery PET/CT 690 and   
Discovery PET/CT 710 systems were reconstructed with OSEM 
and Q.Clear. All corrections were applied inside the iterative 
reconstruction loop for both OSEM and Q.Clear. OSEM and 
Q.Clear reconstructed images are shown in Figures 7, 8 and 9. 
The images show a significant increase in SUVmean with Q.Clear. 

Figure 7 shows whole-body 18F-FDG clinical images 
acquired on the Discovery PET/CT 690. The OSEM image was 
reconstructed using 2 iterations/24 subsets and a post-filter of 
a 4 mm FWHM Gaussian in-plane and a [1:6:1] weighted axial 
filter. The Q.Clear image was reconstructed with a β=350 and 
no post filtering. 

Figure 8 shows 68Ga-DOTATOC clinical images acquired on a 
Discovery PET/CT 710, which also demonstrates a significant 
increase in SUV mean with Q.Clear. The OSEM image was 
reconstructed using 2 iterations/24 subsets and a post-filter 
of a 6.4 mm FWHM Gaussian in-plane and a [1:4:1] weighted 
axial filter. The Q.Clear image was reconstructed with a β=400. 

SUV mean: 6.4 g/ml

SUV mean: 10.9 g/ml

(a) OSEM

(b) Q.Clear

Figure 7. Clinical 18F-FDG images acquired on a Discovery PET/CT 690. The OSEM  
image was reconstructed using 2 iterations/24 subsets and a post-filtering of a  
4 mm FWHM Gaussian in-plane and a [1:6:1] weighted axial filter (“Light” axial filter).  
The Q.Clear image was reconstructed with β=350.

SUV mean: 4.2 g/ml
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Figure 8. Clinical 68Ga images acquired on a Discovery PET/CT 710. The OSEM image 
was reconstructed using 2 iterations/24 subsets and a post-filtering of a 6.4 mm FWHM 
Gaussian in-plane and a [1:4:1] weighted axial filter (“Standard” axial filter). The Q.Clear 
image was reconstructed with β=400.



Figure 9 shows 18F-FDG clinical images acquired on the 
Discovery PET/CT 600 which also demonstrates a significant 
increase in SUV mean with Q.Clear. The OSEM image was 
reconstructed using 2 iterations/32 subsets and a post-filter 
of a 6.4 mm FWHM Gaussian in-plane and a [1:4:1] weighted 
axial filter. The Q.Clear image was reconstructed with a β=200 
and no post filtering.

SUV mean: 6.33 g/ml

SUV mean: 1.38 g/ml
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Figure 9. Whole-body 18F-FDG clinical images acquired on the Discovery PET/CT 600. The 
OSEM image was reconstructed using 2 iterations/32 subsets and a post-filter of a 6.4 
mm FWHM Gaussian in-plane and a [1:4:1] weighted axial filter. The Q.Clear image was 
reconstructed with a β=200 and no post filtering.

SUMMARY
Many recent advancements have been made towards improved quantitative accuracy in PET imaging. A current impediment 
towards superior quantitative imaging in PET was the necessary under-convergence required in OSEM to control image noise. 
Q.Clear provides a fully convergent PET image reconstruction technique, enabled by controlling image noise through regularized 
reconstruction. Q.Clear was designed to provide excellent image quality and consistent and  
accurate quantitation. 

Like any change in reconstruction processing, the effects of the Q.Clear algorithm should be considered when evaluating 
longitudinal studies. The results presented here demonstrate that Q.Clear provides an increase in both SNR and SUV recovery 
over OSEM. As such, Q.Clear is the foundation in the next generation of quantitative imaging. 

Figure 10 shows 18F-FDG brain images from two exams 
acquired on a Discovery PET/CT 690 and reconstructed with 
OSEM and Q.Clear. The OSEM images were reconstructed with 
3 iterations/32 subsets and a post-filter of 2.5 mm. The Q.Clear 
images were reconstructed with a β=150 and demonstrate 
excellent contrast and image quality in both brain exams.

OSEM

OSEM
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Q.Clear
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Figure 10. Two clinical 18F-FDG brain acquisitions from a Discovery PET/CT 690. The OSEM 
images were reconstructed using 3 iterations/32 subsets and a post-filtering of a 2.5 mm 
FWHM Gaussian in-plane. The Q.Clear images were reconstructed with β=150.
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